描述系爭專利(Method For Updating Alarm Limits)
- 這是一個修正警報值的方法,當製造程序的變數,比如溫度、壓力和流率超過預先設定的幅度後,警鈴就會響,該方法包含三個步驟:
- 第一步只測量在程序中變數的值。
- 第二步使用公式以計算更新的警告極限值。
- 第三步用更新後的值以取代目前的警告極限值。
- 和傳統的修正警報值方法的差異在於第二步驟,就是使用數學公式。
描述系爭專利的Claim1
- A method for updating the value of at least one alarm limit on at least one process variable involved in a process comprising the catalytic chemical conversion of hydrocarbons(限定觸媒反應用途)wherein said alarm limit has a current value of Bo + K
- wherein Bo is the current alarm base and K is a predetermined alarm offset which comprises:
- Determining the present value of said process variable, said present value being defined as PVL;
- Determining a new alarm base B1, using the following equation: B1 = Bo(1.0--F) + PVL(F), where F is a predetermined number greater than zero and less than 1.0;
- Determining an updated alarm limit which is defined as B1+K; and thereafter
- Adjusting said alarm limit to said updated alarm limit value.
- 由上述的權利項內容,主張的權利只是單純的公式。
Flook案的訴訟過程
- USPTO認為數學公式是申請案和先前技術相比的唯一新穎性,並以申請標的不符合101條而駁回申請案。
- 美國專利上訴與衝突委員會維持裁判。
- CCPA上訴法院推翻原判決,主張申請案只針對觸媒催化的領域,並沒有獨佔整個公式的所有應用,因此並認為可以授予專利。
- 美國專利上訴與衝突委員會提出調卷申請,並認為上訴法院的判決會傷害計算機軟體產業。
- 最高法院推翻上訴法院的判決,而且並不認為可獲得專利權(we held that the discovery of a novel and useful mathematical formula may not be patented.)
上訴法院CCPA的主張
- Benson引證案所claim的範圍是完全占據所有數學公式,但是上訴人所主張的「更新警告值的方法」,只限定在碳氫化合物於觸媒轉換的程序。
- 法院認為限定用途的解決方式並不代表預先占據整個公式的應用。
美國專利上訴與衝突委員會的主張
- 該申請案的公式涵蓋的範圍廣到包含未來的所有應用(The claims cover a broad range of potential uses of the method. They do not cover every conceivable application of the formula)。
- CCPA的決定,將會削弱(debilitating effect)目前快速發展的軟體產業(因為技術被預先占據),而且這代表以後會有數以千計相似的公式申請案,會造成USPTO的負擔。
專利權人主張
- 主張該方法是屬於「程序」,因此符合第101條所保護的標的內(new and useful process, machine, manufacture, or composition of matter)。
- He does not seek to “wholly preempt the mathematical formula,” since there are uses of his formula outside the petrochemical and oil- refining industries that remain in the public domain.(只限定在石化業,還有很多發揮的空間)
- He argues that the presence of specific "post-solution" activity--the adjustment of the alarm limit to the figure computed according to the formula--distinguishes this case from Benson and makes his process patentable .
爭點
- 是否像這種具有事後解決應用的公式可以被專利?(Whether the post-solution applications of such a formula makes respondent's method eligible for patent protection.)
- 像這種唯一的新穎性為數學公式的申請案如果通過,是否代表其它類似的慣用方法也可以通過?(The question is whether the discovery of this feature makes an otherwise conventional method eligible for patent protection.)
最高法院主張
- 該專利申請案的主旨,不是解釋如何選擇安全的邊界值,也不是用在監控製程的變數,它提供的只有,用來計算更新警告值得公式(All that it provides is a formula for computing an updated alarm limit)。
- The holding that the discovery of that method could not be patented as a "process“.
- The line between a patentable "process" and an unpatentable "principle" is not always clear. Both are "conception of the mind, seen only by their effects when being executed or performed."
- Benson applied the established rule that a law of nature cannot be the subject of a patent.
- 各種事後解決行為( post-solution activity),都可以使一個不可專利的原理變成一個可專利的程序。(that post-solution activity can transform an unpatentable principle into a patentable process)
- 有經驗的專利代理人可以向幾乎任何數學公式增加一些後續步驟,從而使申請案最終獲得專利。
- A competent draftsman could attach some form of post-solution activity to almost any mathematical formula.
- 如果照專利權人的說法,就會連三角定律(C2=A2+B2)也可以被專利,因為專利申請案最終都可以包含一個步驟,顯示出該公式可以用於現有的測量技術。
- The concept of patentable subject matter under §101 is not "like a nose of wax which may be turned and twisted in any direction.
- 因為程序包含自然法則和數學公式,所以是不可被專利的。
- If there is to be invention from such a discovery, it must come from the application of the law of nature to a new and useful end. (必須應用自然法則於新又有用的用途)
引證案(O'Reilly v. Morse )
- 在該案中,最高法院駁回了Samuel Morse過於寬泛的申請。
- Samuel Morse申請電磁在遠距離情況下,打印可理解的信號、字符或字母,因此他試圖對於電磁的任何使用都獲得專利權。
- Morse電磁振動原理不可以專利,因為沒有據以實施性也沒有教示社會大眾。
引證案(Neilson v. Harford)
- 在該案中最高法院回顧了英國的Neilson v. Harford一案,該案涉及在爐體中進行熱空氣循環以增強效力的問題。
- 英國法院拒絕授予該申請以專利權,因為不能給予一項基本原理以專利權,這基本原理僅表現為「向爐體中註入熱空氣比注入冷空氣更能增加爐子的溫度」。
- 最高法院認為,如果原理或數學公式是公知的情況下,應當適用在Neilson v. Harford 等先例中的觀點。因此,對於數學公式的獨占性的申請,自然不能獲得專利權。
- We think the case must be considered as if the principle being well known, the plaintiff had first invented a mode of applying it.
- 該原理是大家都知道的,只是原告第一個提出應用的方式。
最高法院主張
- Respondent‘s process is unpatentable under §101, not because it contains a mathematical algorithm as one component, but because once that algorithm is assumed to be within the prior art, considered as a whole, contains no patentable invention.(審查整份專利,發現並沒有可以專利的發明)
- The rule that the discovery of a law of nature cannot be patented rests, not on the notion that natural phenomena are not processes.
- 上訴人錯誤性的假設that if a process application implements a principle in some specific fashion, it automatically falls within the patentable subject matter of § 101 .
- This assumption is based on respondent‘s narrow reading of Benson(狹義的解讀Benson案), and is as untenable(站不住腳) in the context of § 101.
- 使用數學公式的申請案是否可專利,並不是簡單地看權利要求是否獨占這一數學公式,而應該看權利要求是否指向新且有用的方法,這與申請案中是否包含數學公式沒有關聯。
- Conversely, the discovery of such a phenomenon cannot support a patent unless there is some other inventive concept in its application.
- 使用數學公式的申請案是否可專利,並不是簡單地看權利要求是否獨占這一數學公式,而應該看權利要求是否指向新且有用的方法,這與申請案中是否包含數學公式沒有關聯。
- Conversely, the discovery of such a phenomenon cannot support a patent unless there is some other inventive concept in its application.
- 使用數學公式的申請案是否可專利,並不是簡單地看權利要求是否獨占這一數學公式,而應該看權利要求是否指向新且有用的方法,這與申請案中是否包含數學公式沒有關聯。
- Conversely, the discovery of such a phenomenon cannot support a patent unless there is some other inventive concept in its application.
- Here it is absolutely clear that respondent's application contains no claim of patentable invention.
- 如果權利項和計算方式相關,即使解決方法用在特殊之目的,該方法依然不適格。
- 由於本申請案除了數學公式之外,並沒有其他新穎和非顯而易見的發明點,因此本申請案是不可專利的。
- 此外,由於有用性可以通過事後解決行為加以補充,審查員在審查專利時不應當被後續活動所左右,而應當看到申請案的實質指向是否為數學公式本身。
- 最後最高法院推翻上訴法院的判決,並不認為可以獲得專利。
個人見解
- 根據Bilski案,如果專利標的,沒有限定在特定裝置,也沒有物質狀態的轉換,就不能被專利。(work on 有體物而且有useful result就可以被專利)
- 本次報告的Fook案的權利項(演繹法)沒有限定在特定裝置,如最告法院法官所說的,該專利申請案只有計算警告值的公式,沒有claim一個有體物。
- 而且自然法則用文字或公式表達都是不能專利,就像阿基米德不能專利它的浮力原理,因為這是科學的基礎工具。
全站熱搜
留言列表